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Abstract: In the present paper, we introduce Smarandache curves in the Euclidean space of parallel transport 

frame. In the section one, we give basic tools of parallel transport frame of a curve in 4-dimensional Euclidean 

space. In section two, we study the parallel transport frame of Euclidean space, besides we solve few theorems, 

corollary and illustrate examples. Again section three, we define parallel transport frame to the Smarandache 

curve and obtain some definitions, theorems and their apparatus. Further section four, we have also explained 

to Frenet frame of principal normal, binomial and derivatives in the curvature of the curve. In the end, we 

discussed about the Smarandache curve in the Euclidean space of all apparatus Ferret-Serret. 
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1. Introduction 

Let 4: ERI  be arbitrary curve in the 4-dimensional Euclidean space in 4E . ),,,,( 4321 xxxxX 

),,,,( 4321 yyyyY  and ),,,,( 4321 zzzzZ  where ZYX ,, be any three vectors in 4E . The curve   is 

parameterized by arc length of the function s if 1)(),(  ss  , together with the inner product of 4E  given 

by 

(1.1)  44332211, yxyxyxyxYX   

In particular, the norm of a vector 4EX  is given by  
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If ,2p  then  
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The vector product ,X Y and Y is defined by the determinant  

(1.2)  

4321

4321

4321

zzzz

yyyy

xxxx

dcba

ZYX   

Let ),,,( 321 mmmt be the moving Frenet frame along the unit speed curve  . Then ,t ,n 1b and 2b  are the 

tangent, the principal normal, first and second binomial vectors of the curve , respectively. Then Frenet-Serret 

frame is given by  
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(1.3) 
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Where 1,,,, 2211  bbbbnntt  

 0,,,,, 2211  bnbtbnbtnt  

Here  ,,  denote principal curvature to the Serret-Frenet frame of the curve  .  While ,t ,n 1b and 2b  are 

called tangent, principal normal and first and second binormal. 

Let )(t  be an arbitrary curve in .4E The Serret-Frenet apparatus of the curve   can be solved by the 

following equations as given below 
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Where  is taken 1  such that determinant of matrix  .1],,,[ 21 bbnt  

We use the tangent vector )(sT and three relatively parallel vector fields ,1m 2m  and 3m  to construct an 

alternative frame. We call this frame a parallel transport frame along the curve. The reason for the name parallel 

transport frame is because the normal component of the derivatives of the normal vector field is zero.  

If the set ),,,( 321 mmmt as parallel transport frame and 

 ,, 11  mtk   ,, 22  mtk    33 ,mtk  

as parallel transport curvatures. 

Using Euler angles an arbitrary rotation matrix is given by 
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, Where angels  ,,  are Euler angles. 

2. Parallel Transport Frame of Euclidean Space  

In this section, we give parallel transport frame of a Smarandache curve and we introduce the relations 

between the frame and Frenet frame of the Smarandache curve in Euclidean space 4E  using the Euler angles. 

The relation which is well known in Euclidean space 4E  is generalized for the first time in 4-dimensional 

Euclidean space .4E  

Theorem 1: Let ),,,( 321 mmmt be a Frenet frame along a unit speed curve
4: ERI   and ),,,( 321 mmmt  

denotes the parallel transport frame of the curve . The relation may be expressed as the arc is given by 

 ),(stt   
 )cossinsinsincos()cos(cos 21   mmn  
                 )cossincossin(sin3  m

 
 

 )sinsinsincos(cos)sin(cos 211   mmb  
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  )sincossincossin(3  m  

 )cos(cos)cos(sin)sin( 3212  mmmb   

The alternative parallel transport frame equations 4E  are given by 

(2.1) 
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where ,1k  2k  and 3k are principal curvature functions according to parallel transport frame of the curve   and 

their expression as follows 

 ,coscos1 k  

 ),cossinsinsincos(2  k  

 )coscossinsin(sin3  k  

and   ,2
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Proof: Given that the above theorem, differentiating the 321 ,, mmm  with respect to s , we get 

 ntm )sincossincoscossin()coscos(1    

  n)sincossincoscossin(    

  1)sincoscossinsin( b   

  ,)sincoscos( 2b 
 

  coscossinsin[]sinsinsinsincos[2
 tm  

   cos(cossinsinsincoscossincoscossin 2k  

   sincossinsincoscossin[)]sinsinsin  n  

  )cossinsinsincos(cossinsinsinsincos    

   sinsincoscos[]sincos 1
 b  

  2]sinsinsinsin(cos b   

  cossinsincos[()]coscossinsin(sin[3
 tm     

  cos(sinsincossincoscoscoscossinsin   

   sinsinsinsinsincoscos[()]sincossin  n  

  )coscossinsin(sincoscossinsincoscos    
  )cossinsincos()]cos(cos 1   b  

  .)]sincossincossin( 2b   

Since ,1m 2m  and 3m are relatively parallel vector field, normal component of the ,1m
2m  and 3m must be zero 

and the equalities are satisfy 

 0,,,,,, 231332123121  mmmmmmmmmmmm
              

 

Also, if we consider that the parallel transport frame of the curve    we can easily complete proof that the 

above theorem. 
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Corollary 1: If we consider 0  that then we get the parallel transport frame in .4E Now, we give an 

example for the curve which has not a Frenet frame at some points but, it has parallel transport frame on these 

points. 

Example 1: Let ),12,12,(sin)( sssss   be a curve in Euclidean space. Since )0,0,0,0()0(   we cannot 

calculate the Frenet frame vectors at the point .0s  However, we can calculate using the parallel transport 

frame vectors as follows  

 ,sin11 bm    ,coscos12 bm    ,cossin13 bm   

Where  and   are constant angles. 

Theorem 2: Let 4: ERI   be a curve with nonzero curvatures )3,2,1( ik i  according to parallel transport 

frame in Euclidean space .4E  Then lies   on a sphere if and only if 01321  ckbkak  where ,,ba and c are 

non-zero constants.  

Proof: Let   lies on a sphere with center P  and radius R , then  
2, RPP    

Differentiating this equation with respect to s , it gives us 

 ,0,  Pt     321 cmbmamP   

For some function ,,ba and .c  

 0,,, 111  PtkmtmPa   

So a is a constant. Similarly, we can easily say that b and c are constants. Then differentiating the equation

 Pt , with respect to s  we get  

 .01,, 321332211  ckbkakttPmkmkmk   

That is, between 21,kk  and 3k  has the linear relation such as  

 01321  ckbkak  

Moreover,  d
d

cbaPPR
2

2222 1
,    

, where d  is the distance of the plane 01 czaxby  from the origin.  

Conversely, suppose that the equation holds 

 01321  ckbkak
 

If P  is denoted by  

  ,321 cmbmamP    

then differentiating the last equation we have  

 0)( 321  tckbkaktP
 

so P  is constant. Similarly shows that  

   PPR  ,2

   is constant.  

So,  lies on a sphere with center P  and radius .R   

Example 2: Let 







 ss

ss
s cos

2

1
,sin

2

1
,

2
cos,

2
sin)( be a curve in Euclidean space .4E  According the 

Frenet frame there are lots of formulas for showing that this curve is a spherical curve. But the formulas have 

some disadvantages which were define the above chapters. Then we calculate curvature functions of the curve 

 according to parallel transport frame. 

 ,01 k cos2 k sin3 k  
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, where  is constant. The curve  satisfy the fallowing equation 

 .01321  ckbkak
 

Consequently, the curve  is a spherical curve. But, using the Frenet curvatures we cannot show that   is a 

spherical curve. Because has a zero torsion. 

3. Parallel Transport frame in 1tb and 1tm to the Smarandache Curve in 4E  

In this section, we define 1tb and 1tm  Smarandache Curve according to parallel transport frames in 4E

and obtains some characterizations for such curves. 

3.1 1tb Smarandache Curves according to the Parallel Transport Frame 

In this subsection we define 1tb  Smarandache curves to the parallel transport frame and obtain their 

Frenet apparatus. 

Definition 1: A regular curve in the 4-dimensional Euclidean space, whose position vector is obtained by 

Frenet frame vectors on another regular curve, is called Smarandache curve. 

Definition 2: Let )(s   be a unit-speed curve with constant and nonzero curvatures ,1k ,2k 3k  and 

),,,( 11 bbnt  be moving frame on it 1tb Smarandache curves are defined by )]()([
2

1
)( 1 sbstS  . 

Theorem 1: Let )(s be a unit speed curve with constant non zero curvatures ,1k ,2k 3k and )(  s  be 1tb  

Smarandache curves in the parallel transport frame defined by the frame vectors of )(s . Then the Frenet 

apparatus of ),,,,,,( 32121  kkkbbnt  could be formed by Frenet apparatus of ),,,,,,( 32121 kkkbbnt . 

Proof: Let )(  s be 1tb  Smarandache curve of the curve .  Then 

By using the definition (2), we get    

(3.1) )]()([
2

1
)( 1 sbstS   

By differentiating (4.1) with respect to s, we get 
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The tangent vector of the curve  is given by 

(3.3) 221 bAnAt   
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Again differentiating the tangent vector of the curve  with respect to s , we can get   as follows 
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The principal normal of the curve   is 
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The second and first binomial vector of the curve is given as follows 

(3.7) 
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The first, second and third curvature of the curve are  
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This is the required proof of the above equations. 

4. 1TM Smarandache curves in 4E  according to the parallel transport frame 

We have studied to 1TM Smarandache curves and we get their parallel transport frame and principal 

curvatures. 

Definition 3: Let )(s   be a unit speed curve in 4E and },,,{ 321  MMMT  be its moving parallel 

transport frame. 1TM Smarandache curves is defined by 

(4.1) ).(
2

1
)( 1 MTs   

Theorem 2: Let )(s   be the unit speed curve with constant principal curvatures  321 ,, KKK and 

)(  s be 1TM Smarandache curves in 4E  defined by the parallel transport frame vectors of )(s  . Then the 

parallel transport frame of    can be formed by the parallel transport frame of    and the principal curvatures 

of ),,( 321  KKK  can be obtained by the principal curvatures of  . 

Proof:  To calculate the parallel transport frame of 1TM Smarandache curve base to )(s differentiating 

equation (5.1) with respect to s then       

(4.2)  


 3322111
2

1
MKMKMKTK

ds

ds
T       

The tangent vector of the curve   can be written as 

(4.3) 
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Where 2

3

2

2

2

1
2

1


 KKK
ds

ds
  

Differentiating (5.3) with respect to s then       

(4.4) 




  3322110 MMMT

ds

dT
T   
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Where ,
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The Frenet frame in the curvature of the curve   is  
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The principal normal of the curve   is 

(4.6) 
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The third derivative of the curve  is given by 
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We know the second and first binomial of the curve  is given by 
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 (4.9)    332211021 MMMTnTbb   

Where 3210 ,,,   are constants and ,1M ,2M and 3M  are the parallel transport frame of ,1M ,2M and

3M  of the curve is given. 

Further the second and third curvature tensor of the curve  is given by 
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The first, second and third curvature of the curve   is to parallel transport frame  
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Discussion: In this paper we discussed an Einstein’s theory opened a door to new geometries such as 

Smarandache curve of parallel transport frame in the Euclidean space. They adapted the geometrical models to 

relativistic motion of charged particles. As it stands, the Frenet-Serret formalism of a relativistic motion 

describes the dynamics of the charged particles. The position vector is composed by Frenet frame vectors on 

another regular curve, is called a Smarandache. In this work, we study special Smarandache Curve in the 

Euclidean space.  
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